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Abstract. We show that for any countable group G equipped with a probability measure
µ, there exists a randomized stopping time τ such that (G,µτ ) admits a strictly larger space
of bounded harmonic functions than (G,µ), unless this space is trivial for all measures on
G. In particular, we exhibit an irreducible probability measure on the free group F2 such
that the Poisson boundary is strictly larger than the geometric boundary equipped with the
hitting measure, resolving a longstanding open problem. As another consequence, there is
never a nontrivial universal topological realization of the Poisson boundary for any countable
group.

1. Introduction

Let G be a countable group equipped with a probability measure µ. We say the measure
µ is irreducible if its support generates G as a group. A function h : G → R is µ-harmonic
if h satisfies the mean-value property h(x) =

∑
g∈G h(xg)µ(g). The space of bounded µ-

harmonic functions can be encoded as the space of bounded measurable functions on a
canonical measure space associated to the pair (G, µ). This space is known as the Poisson
boundary of (G, µ), which we denote by Π(G, µ).

Probabilistically, the Poisson boundary captures stochastically significant asymptotic events
of the µ-random walk, which is the Markov chain (wi)i≥1 on G with transition probabili-
ties p(g, h) = µ(g−1h). Analytically, the Poisson boundary is a measure G-space with the
property that for any bounded µ-harmonic function h on G, there exists a bounded function
f ∈ L∞(Π(G, µ), ν) such that

h(g) =

∫
Π(G,µ)

f(ξ)dg∗ν(ξ).

This is known as the Poisson representation formula.
Formally, the Poisson boundary is the quotient of the space of µ-random walk sample

paths (GN,P) by the measurable hull of the orbit equivalence relation of the time shift. That
is, two paths (wi)i≥1, (w

′
i)i≥1 are equivalent if there exists k, k′ ∈ N such that wi+k = w′

i+k′

for all i ∈ N. We point the reader to [Kai96, Fur02, Zhe22] for more information on Poisson
boundaries.

The Poisson boundary was popularized in Furstenberg’s 1963 paper [Fur63b], though its
history goes back to the work of Blackwell [Bla55], Feller [Fel56], and Doob [Doo59]. It
has been a powerful tool to prove rigidity theorems [Fur67] as well as understanding the
large-scale geometry of groups [Ers04, BV05, AABV16, EZ20].

Furstenberg observed that in many situations this abstract measure space can be realized
by a natural space associated with the group [Fur63b]. This observation immediately leads to
the topological identification problem: given a pair (G, µ), can one find a concrete topological

Date: June 17, 2025.
This was completed during a visit of the first author to UC San Diego.

1



2 K. CHAWLA AND J. FRISCH

“boundary" B of the group such that (i) the µ-random walk on G almost surely converges
in the induced bordification, and (ii) the space B with the hitting measure ν is the Poisson
boundary of (G, µ). We contrast this with the identification problem, which is formulated
in the measure category and asks to show that a concrete µ-boundary (a priori just an
equivariant quotient of the Poisson boundary) is in fact isomorphic to the Poisson boundary
(see [Kai96, Zhe22]).

A prototypical example is the case of the free group F2, where for every irreducible prob-
ability measure µ, the µ-random walk almost surely converges to the geometric boundary
of the tree ∂F2. This fact is essentially due to Furstenberg [Fur63a, Fur67, Section 4]. It is
then natural to ask under what conditions on µ this boundary is a model for the Poisson
boundary.

Over forty years ago, in their 1983 paper, Kaimanovich and Vershik asked whether the
Poisson boundary of the free group can be identified with the geometric boundary for all
measures. When µ is supported on the generating set of F2, this was shown to be true
by Dynkin-Maljutov [DM61]. Derrienic [Der75] extended their result to the case of µ with
finite support. In a breakthrough paper by Kaimanovich [Kai00], he showed that for any
µ with finite entropy and finite logarithmic moment, the Poisson boundary of (F2, µ) is the
hyperbolic boundary equipped with the hitting measure. Finally, this was extended to all
finite entropy measures in joint work of the authors with Forghani and Tiozzo [CFFT22].

This question has been reiterated numerous times in the past decade [For15, FT19, EK23,
Kai24].

Our primary goal is to resolve this question in the negative.
Theorem 1.1. There exists an irreducible probability measure on F2 such that (∂F2, ν) is
not the Poisson boundary of (F2, µ).

The primary source of difficulty is an utter lack of general techniques in the presence of
infinite entropy. The use of entropic methods in this area was pioneered by Kaimanovich
and Vershik [KV83] and has been a central motif of the field. Indeed, with a few notable
exceptions, some of which we describe below, almost all Poisson boundary identification
results have only applied to measures which have finite entropy. Most have used the entropic
criterion of Kaimanovich [Kai00]. All non-entropic results instead rely on specific structures
of certain probability measures [Bla55, DM61, EK23]. On the other hand, convergence to
the boundary holds for all irreducible measures, even with infinite entropy, so it is plausible
that the geometric boundary may still be a model for the Poisson boundary. We show that
this is not the case. Our method even extends to the free semigroup, where the random walk
exhibits no backtracking (see Remark 2.7).

While we give a self-contained proof of Theorem 1.1 in Section 2, it is also a corollary of the
following significantly more general result, which shows that for all countable groups (except
those for which the Poisson boundary is always trivial), there is no hope to find a universal
boundary for all irreducible measures. That is to say, the existence of the probability measure
in Theorem 1.1 has little to do with the structure of the free group, but is actually emblematic
of a much more general phenomenon.

To state it, we require some definitions.
Definition 1.2. A nonnegative integer-valued random variable τ is a randomized stopping
time with respect to a filtration (Fi)i≥1 if there is a collection of i.i.d. Uniform([0, 1]) ran-
dom variables (Ui)i≥1 such the event {τ ≤ n} is measurable with respect to the σ-algebra
σ(Fn, U1, ..., Un).
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Given a probability measure µ, a random variable τ is a randomized stopping time for the
µ-random walk if the previous definition holds with Fn = σ(w1, ..., wn). We denote by µτ

the law of the µ-random walk stopped at the random time τ . Stopping times have been
a useful tool in the area since its conception, for example in work of Furstenberg [Fur71,
Section 4.3] to relate the Poisson boundary of groups and their corecurrent subgroups, and
Kaimanovich-Vershik [KV83, Proposition 6.3] to show triviality of the boundary for random
walks on lamplighters over Z and Z2.

Randomized stopping times in particular have been used by Kaimanovich [Kai92] to show
that Furstenberg’s discretization of Brownian motion does not change the Poisson boundary
[Fur71] (see also [LS84, Section 8]). Forghani and Kaimanovich prove in upcoming work
[FK24] (though proofs are included in Forghani’s thesis [For15]) that under some mild mo-
ment assumptions on a randomized stopping time τ , the pairs (G, µ) and (G, µτ ) have the
same Poisson boundary. They also claim that standard stopping times always preserve the
Poisson boundary, though there is a subtle error in the proof (see Remark 2.9). We point
out the distinction of randomized stopping times from stopping times, in that they can use
randomness external to the µ-random walk, and more discussion of their differences in the
context of random walks on groups is available in [For15]. There are many works exploring
the relation between asymptotic properties of (G, µ) and (G, µτ ) under various assumptions
on the stopping time τ [Kai83a, HLT14, For15, For17, FMK19], and we point the reader to
[FK24, For15] for more detailed history of the subject.

We also require an algebraic property, whose relation with the Poisson boundary has been
observed and exploited in numerous previous works [Jaw04, FHTF19, EK23].

Definition 1.3. A non-trivial group G has the infinite conjugacy class property, or ICC
property, if each of its non-trivial elements has an infinite conjugacy class.

It is a theorem of Jaworski [Jaw04] that if a group does not have an ICC quotient, then
the Poisson boundary Π(G, µ) is trivial for every irreducible measure µ (in the finitely gen-
erated case, this was previously proven by Dynkin-Maljutov [DM61]). Such a group is called
Choquet-Deny. It was recently shown that for every group with an ICC quotient, there is a
probability measure with a non-trivial Poisson boundary [FHTF19].

A probability measure is said to be non-degenerate if suppµ generates G as a semigroup.
A measure is symmetric if µ(g) = µ(g−1) for all g ∈ G.

Theorem 1.4. Let G be a countable group with an ICC quotient, and µ be any irreducible
probability measure on G. Then there exists a randomized stopping time τ for the µ-random
walk such that the Poisson boundary of (G, µτ ) is strictly larger than that of (G, µ). If µ is
symmetric or non-degenerate, µτ can be made so as well.

We remark that a finitely generated group G has an ICC quotient if and only if it is not
virtually nilpotent [FF18, DM56, McL56], so Theorem 1.4 applies to all finitely generated
groups of superpolynomial growth. In particular, there is a symmetric and non-degenerate
measure on the free group whose Poisson boundary is not the geometric boundary. By
Jaworski’s theorem [Jaw04], our Theorem 1.4 implies that unless the Poisson boundary is
always trivial, one can make it strictly larger via transforming µ by a randomized stopping
time. In fact, it was explicitly asked in the thesis of Forghani whether randomized stopping
times always preserve the Poisson boundary [For15, Question 4.3.1]; we answer this question
in the negative.
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This is the first non-realizability result for the Poisson boundary. It was previously un-
known whether all groups admitted a universal realization of their Poisson boundary. We
not only exhibit an example where this is impossible, but show that it is never possible,
unless the Poisson boundary is trivial for all measures. In other words, the identification
problem has no universal solution for any group, in the sense that for any group which is not
Choquet-Deny, and any irreducible measure µ, there is a randomized stopping time τ such
that the Poisson boundary Π(G, µ) is a proper quotient of Π(G, µτ ).

As one corollary, we show that main result of [FHTF19] can be achieved via the trans-
formation of any irreducible measure by a randomized stopping time, although this new
measure may have infinite entropy.

Corollary 1.5. For any countable group G with an ICC quotient equipped with an irreducible
probability measure µ, there exists a randomized stopping time τ such that (G, µτ ) has a non-
trivial Poisson boundary.

Remark 1.6. The authors of [FHTF19] actually construct a measure µ which is fully sup-
ported in the sense that µ(g) > 0 for all group elements g ∈ G. Examining our construction
of the randomized stopping time τ in section 4.1, we see that for any fully supported measure
µ, the measure µτ coming from Theorem 1.4 is also fully supported. On the other hand, our
construction when applied to the free group will always produce infinite entropy measures,
by [CFFT22, Theorem 1.1]. We expect our general construction to always produce infinite
entropy measures.

As mentioned earlier, Theorem 1.4 implies the topological identification problem never
has a universal solution without additional conditions on the measure. To elaborate, we
define a bordification of G to be a space G ∪ B where the action of G on itself extends by
homeomorphisms to G ∪ B. We say that a bordification of G is a candidate boundary if
there exists an irreducible probability measure µ such that the µ-random walk on G almost
surely converges in B. We say a measure µ′ is compatible with B if the µ′-random walk
almost surely converges to a unique point in B. This defines a hitting measure ν on B by
ν(U) := P(limn→∞ wn ∈ U).

Corollary 1.7. Let G be a countable discrete group with an ICC quotient. For every candi-
date boundary B, there is a compatible probability measure µ such that B equipped with the
hitting measure is not the Poisson boundary of (G, µ).

Proof. Since B is a candidate boundary, there exists an irreducible measure µ which is
compatible with B. If (B, ν) is not the Poisson boundary of (G, µ), we are done. If it is,
let µτ be the measure coming from Theorem 1.4. Since µτ is a randomized stopping time
transformation of µ, then the µτ -random walk almost surely converges and has the same
hitting measure (B, ν). Since there exists a bounded µτ -harmonic function that is not µ-
harmonic, we deduce that not every bounded µτ -harmonic function can be realized by the
Poisson integral formula on (B, λ). □

It has been emphasized that the Poisson boundary is an inherently measure-theoretic
object, and that "attempts to treat the Poisson boundary as a topological space... shroud
its true nature" [Kai96]. Our theorem underscores this point: the Poisson boundary never
admits a topological realization for all measures.

As mentioned previously, results in the field so far have largely relied on entropic methods–
in particular, Kaimanovich’s entropy criterion for identification of the Poisson boundary
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[Kai00] (the first proof of which appeared in [Kai85]). These most notably include (i) groups
with hyperbolic properties [Led85, Kai00, MT18, Hor16, CFFT22] as well as (ii) wreath
products and their variants [Ers11, LP21, EF25, EFR23, Sil24, VKS25] (see [Zhe22, FS24]
and references therein for more examples).

There are however, a few notable exceptions. First is the original proof of Kaimanovich
and Vershik that amenable groups admit irreducible measures with trivial boundary [KV83,
Theorem 4.4]. Second is the work of Andrei Alpeev [Alp25], who showed that if a group is
not C∗-simple, then the action on the Poisson boundary is not essentially free for a generic
measure on the group. In addition there is the work of Alpeev [Alp24a] and Kaimanovich
[Kai83b] who showed for infinite entropy measures that the left random walk can have a
trivial Poisson boundary even if the right one is nontrivial, and that the Poisson boundary
need not split over products in the presence of infinite entropy [Alp24b, Kai24]. Finally,
we wish to highlight the recent paper of Erschler and Kaimanovich who, on any ICC group,
construct a family of forests and associated probability measures such that the corresponding
random walks in some sense resemble the simple random walk on a tree [EK23]. As a result,
the boundary of these forests provide models of the Poisson boundary for those particular
measures.

We leverage Erschler and Kaimanovich’s framework in the proof of Theorem 1.4. They
remark that the boundaries they construct do not have any common underlying space, and
“this absence of universality seems to be the first example of this kind". In the case of finite
entropy measures on the free group, these boundaries coincide up to a conull set with the
geometric boundary (see [CFFT22]).

We prove that in infinite entropy, there are infinitely many non-isomorphic Poisson bound-
aries on the same group. To be precise, we use Erschler and Kaimanovich’s framework to
construct a boundary for the transformed measure µτ , and show that this new boundary
is strictly larger than the Poisson boundary of µ. We also show that this boundary is the
Poisson boundary of µτ (see Corollary 4.8).

We now explain the key observation behind our construction. Let µ be the measure driving
the lazy simple random walk on F2. If τ is a randomized stopping time for the µ-random walk,
then the µ-random walk and the µτ -random walk induce the same hitting measure ν on the
boundary. If (∂F2, ν) is the Poisson boundary of (F2, µτ ), then the Poisson integral formula
implies both µ and µτ admit exactly the same collection of bounded harmonic functions.
Hence to show that (∂F2, ν) is not the Poisson boundary, it suffices to exhibit a bounded
function that is µτ -harmonic but not µ-harmonic. In other words, we completely bypass the
need to work with the conditional random walk or with any entropic criteria.

The paper is organized as follows. In Section 2 we provide a self-contained proof of
Theorem 1.1. In Section 3 we prove a lemma on the abundance of “switching" elements,
akin to [FHTF19], [EK23], [GMBT24], and [LBMB18]. In Section 4 we recall the framework
of Erschler and Kaimanovich and use our lemma to construct the measure µτ . Finally in
Section 5 we prove Theorem 1.4 by exhibiting an explicit µτ -harmonic function that is not
µ-harmonic.

2. Proof of Theorem 1.1

We let µ be the measure driving the lazy simple random walk on F2, that is µ = 1
2
δe +

1
8

∑
s∈{a±,b±} δs. We will construct a randomized stopping time τ for the µ-random walk.
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Our randomized stopping time τ will be a mixture of a countable collection of stopping
times (τi)i≥0, weighted by an auxiliary probability measure p on the natural numbers N.
That is to say, one step of the µτ random walk can be sampled by first sampling some i ∼ p,
then sampling a group element according to the stopped measure µτi . In particular, we can
write µτ =

∑
i≥0 p(i)µτi . For the remainder of this section, we will specify what properties

we want τ to satisfy, and then we will construct τ via a judicious choice of p and a sequence
of stopping times (τi)i≥0.

2.1. A reduction to the lamplighter group. Recall the lamplighter group Z ≀ Z/2Z,
defined as the semidirect product Z ⋉

⊕
i∈Z Z/2Z, where the action of Z is by shifting the

index. Elements of this group are pairs (X,φ) where φ is a finitely supported function
φ : Z→ Z/2Z and X is an integer.

We consider the homomorphism π from F2 to the lamplighter Z ≀Z/2Z induced by setting
π(a) = (e0, 0) and π(b) = (0, 1), where e0(x) = 1 if x = 0 and e0(x) = 0 otherwise.

Our choice of p and (τi)i≥0 will be to ensure that the following proposition holds:

Proposition 2.1. The Poisson boundary of (Z ≀ Z/2Z, π∗µτ ) is nontrivial.

We explain why this implies that the geometric boundary of F2 is not a model for the
Poisson boundary of (F2, µτ ).

Proof of Theorem 1.1 given Proposition 2.1. Let ν be the hitting measure on ∂F2 induced
by the lazy simple random walk. As µτ is a randomized stopping time transformation of
the lazy simple random walk, the measure µτ induces the same hitting measure on ∂F2. If
(∂F2, ν) is the Poisson boundary of (F2, µτ ), then the Poisson integral formula implies that
µ and µτ admit the same collection of bounded harmonic functions.

Hence to show the claim it suffices to exhibit a bounded µτ -harmonic function that is
not µ-harmonic. Since the Poisson boundary of (Z ≀ Z/2Z, π∗µτ ) is nontrivial, we may let f
be a non-constant bounded π∗µτ -harmonic function on Z ≀ Z/2Z. Then the pullback π∗f is
non-constant, bounded and µτ -harmonic.

We claim π∗f is not µ-harmonic. To deduce this, we show that any bounded function on
F2 which is µ-harmonic and constant on the fibers of π must be constant. Indeed, we can
write such a function in the form π∗g where g is a bounded function on Z ≀ Z/2Z. Then for
any x ∈ F2, we have∑

y∈Z≀Z/2Z

g (π(x)y) π∗µ(y) =
∑

y∈Z≀Z/2Z,
k∈π−1(y)

π∗g(xk)µ(k) = π∗g(x) = g(π(x)).

Hence g is π∗µ-harmonic. Since π∗µ is a finitely supported symmetric and irreducible
measure on the lamplighter, the Poisson boundary of (Z ≀ Z/2Z, π∗µ) is trivial. As a result,
g is constant. As π∗g is constant on the fibers of π, it must be constant everywhere. □

Remark 2.2. As pointed out to us by Vadim Kaimanovich, Proposition 2.1 implies Theorem
1.1 by the fact that for any normal subgroup N of a countable group G, the Poisson boundary
Π(G/N, π∗µ) is the space of ergodic components of the action of N on Π(G, µ) (see [Kai81] or
[For15, Theorem 2.4.2]). Hence if the Poisson boundary of (Z≀Z/2Z, π∗µτ ) is larger than that
of (Z ≀Z/2Z, π∗µ), then the Poisson boundary of (F2, µτ ) is strictly larger than the geometric
boundary. For the convenience of the reader, we decided to retain the proof above.

We now proceed with the construction of p and (τi)i≥0.
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2.2. A heavy-tailed probability measure on N. Given a probability measure p on N,
let (Xi)i≥1 be i.i.d samples drawn according to p. Let Tk be the kth record time given by
T0 = 1, Tk = inf{i > Tk−1, Xi ≥ Xj∀j < i}. In addition, let Rk = XTk

be the kth record
value.

Definition 2.3. A probability measure p on N has eventually simple records if almost surely,
for k sufficiently large, we have Rk+1 > Rk.

We record some lemmas about records times of i.i.d. samples.

Lemma 2.4. [Ver73, BSW94, Qi97, Eis09, EK23, Lemma 2.3] There exists a probability
measure p on N which satisfies p(i) > 0 for all i ≥ 0 and has eventually simple records.

Remark 2.5. In fact, there are many probability measures with eventually simple records. It
was observed by Vervaat (see [Ver73]) that the sequence of record values (Rk)k≥0 is a Markov
chain with transition probabilities p(i, j) := p(j)/

∑
ℓ≥i p(ℓ). By Borel-Cantelli, a sufficient

condition for eventual record simplicity is that
∑

i≥0 p(i, i)
2 < ∞ and that p has infinite

support. This is satisfied, for instance, by the measure p(n) = c(n+ 1)−2 for an appropriate
constant c > 0.

For the rest of this section, fix a measure p satisfying the conclusion of Lemma 2.4.
We also introduce a gauge function which controls the record times in terms of previous

record values.

Lemma 2.6. [EK23, Lemma 2.17] For any probability measure p on N, there exists a non-
decreasing Φ : N→ N such that almost surely for k sufficiently large we have Tk+1 < Φ(Rk).

We note that the condition here is on Tk+1, not Tk.

2.3. A sequence of stopping times. Let Zn denote the simple random walk on F2

and (X,φn) = π(Zn) its projection to Z ≀ Z/2Z. Given sequences of natural numbers
(sn)n≥0, (rn)n≥0, we define a sequence of stopping times (τn)n≥0 by

τn = inf
{
t ≥ 1, φt|[−sn,sn] ≡ 0, |Xt| ≥ rn

}
.

In other words, the first time that all the the lamps in the interval [−sn, sn] are off and
the lamplighter is more than rn away from the origin.

Since the simple random walk on Z is recurrent, it follows that each τn is almost surely
finite. Indeed, recurrence of the simple random walk implies the recurrence of the pair
(φt|[−sn,sn], Xt), so that almost surely the condition in the definition of τn is met infinitely
often.

We proceed to inductively make a choice of s1 < r1 < s2 < r2 < .... Set s1 = r1 = 0. Let
r1, s1, ..., sk−1, rk−1 be given. Given a sequence (i1, i2, ...iΦ(k)) ⊂ {1, ..., k − 1}Φ(k), consider
the random sequence (gj)1≤i≤Φ(k) where the gj are each drawn independently from µτ (j) , the
transformation of µ by the stopping time τ (j) = τij , which is well defined as each element
of the sequence is less than k and we have already chosen r1, s1, ..., rk−1, sk−1. Then for
1 ≤ j ≤ Φ(k), let wj = g1...gj, and let φj be the lamp configuration of π(wj).

We pick sk large enough that for every choice of sequence (i1, ..., iΦ(k)), with probability
at least 1 − 2−k the support of φj is contained in [−sk/3, sk/3] for all 1 ≤ j ≤ Φ(k). Then
we set rk = 3sk.

With our sequence of stopping times and probability measure p chosen, we are now ready
to prove proposition 2.1 and hence Theorem 1.1.
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Proof of Proposition 2.1. First observe that µτ is irreducible as p(0) > 0 and µ is irreducible.
We show the Poisson boundary of (Z ≀Z/2Z, π∗µτ ) is nontrivial by showing that the sequence
of lamp configurations (φj)j≥0 almost surely converges. Let (Xi)i≥1 be i.i.d samples from p,
and (Tk)k≥1 the associated record times. Then almost surely there exists k0 such that for
k ≥ k0, we have Rk−1 < Rk < Rk+1, and Tk+1 < Φ(Rk) (by Lemma 2.6). Given some k ≥ k0,
consider the random walk at time Tk+1 − 1,

wTk+1−1 = g1...gTk−1︸ ︷︷ ︸
a

gTk
gTk+1...gTk+1−1︸ ︷︷ ︸

b

.

Observe that each of a and b is a product of at most Φ(Rk) increments, drawn independently
from some sequence µτi1

, ..., µτiℓ
where ij < Rk for all 1 ≤ j ≤ ℓ. Then by our choice of

(sk)k≥0, (rk)k≥0 together with the Borel-Cantelli lemma, we know that almost surely for k
sufficiently large, we have

φTk−1|[−sRk
/3,sRk

/3] = φj|[−sRk
/3,sRk

/3]

for all Tk ≤ j ≤ Tk+1 − 1. Since the records Rk are by definition increasing and they almost
surely go to infinity, the limit limj→∞ φj exists almost surely.

As µτ is irreducible, the limiting lamp configuration is not almost surely constant, so the
Poisson boundary of (Z ≀ Z/2Z, π∗µ) is nontrivial. □

Remark 2.7. We remark that this construction can also be made to work for the free semi-
group. For the semigroup F+

2 generated by a and b, we get a surjection onto the lamplighter
by sending a to (0, 1) and b to (e0,−1). The simple random walk on the free semigroup
pushes forward to a irreducible random walk on the lamplighter whose projection to Z is
recurrent, so a similar choice of randomized stopping time works to produce a measure on
F+
2 with Poisson boundary strictly larger than the geometric boundary.

Remark 2.8. We can make our construction work with a non-randomized stopping time as
opposed to a randomized stopping time. To do this, we exploit the randomness coming from
the number of increments of the µ-random walk which take the value e. Indeed, observe
that the supports of (µτi)i≥0 are pairwise disjoint, so that we may let τ be the stopping time
given by stopping the µ-random walk the first time it lies in the support of some µτn if the
number of identity increments is at most ⌊1/p(n)⌋ modulo ⌊1/p(n)⌋2. If (sk)k≥1, (rk)k≥1 are
sufficiently large depending on p, then the number of identity increments modulo ⌊1/p(n)⌋2
is asymptotically uniformly distributed and asymptotically independent of the position of
the random walk, so that our same proof works to show that the induced random walk on
the lamplighter has non-trivial boundary.

Remark 2.9. It is claimed in an unpublished manuscript of Forghani and Kaimanovich
[FK24], and quoted in [For15, Theorem 3.6.1], that non-randomized stopping times do not
modify the Poisson boundary. However there is a subtle error in the proof. The transformed
random walk on the group G is lifted to the free semigroup on the set suppµ, viewed as
abstract symbols, where the Poisson boundary is left unchanged by a lift of the stopping
time. The transformed measure on the free semigroup, however, is no longer generating, so
one can not necessarily conclude that the Poisson boundary of the quotient (G, µτ ) is left
unchanged.
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3. Random walks and switching elements in ICC groups

Given a finite subset F ⊂ G and a (not necessarily finite) subset A ⊂ G, we say that A
is F -switching if for any f1, f2, f3, f4 ∈ F, a1, a2 ∈ A, the equality f1a1f2 = f3a2f4 implies
f1 = f3, f2 = f4, and a1 = a2. We say that an element g ∈ G is F -switching if the
set {g} is F -switching and that g is F -superswitching if the set {g, g−1} is F -switching.
Switching sets were defined in [EK23], generalizing the notion of switching elements from
[FHTF19, FTVF19],

The goal of this section is to prove Lemma 3.3 where we produce, for any finite F ⊂ G,
a stopping time τ such that the support of µτ is F -switching. This lemma is key to the
construction of our randomized stopping time in the proof of Theorem 1.4, and is applied in
Section 4.1.

Without loss of generality we may assume that µ(e) > 0, since replacing µ with 1
2
µ +

1
2
δe preserves the space of bounded harmonic functions. One may interpret this as first

transforming µ by a randomized stopping time which is 0 or 1 each with probability 1/2,
then transforming it by the randomized stopping time τ .

The authors of [FHTF19] and [EK23] construct switching and superswitching elements
using a density argument, that if a group is ICC then the set of non-F -superswitching
elements is small in an appropriate sense, and so there are infinitely many F -superswitching
elements. However, to construct a measure using a randomized stopping time, it is not
enough to show the existence of switching elements. Instead we need to show that the µ-
random walk witnesses an abundance of switching elements. To do this, we take an approach
inspired by [GMBT24]. Roughly speaking, we show that any irreducible random walk run
for sufficiently long will be F -switching with high probability. We need the following lemma,
similar to [GMBT24, Claim 2.1] and [LBMB18, Lemma 3.2].

Lemma 3.1. For any irreducible probability measure µ on a countable group G, any subgroup
H < G of infinite index and finite subset F ⊂ G, we have P(wn ∈ HF )→ 0.

Proof. Consider the action of G on the space of right cosets G/H. We first claim that every
suppµ-semigroup orbit is infinite. Indeed, if there was a finite set X such that Xg ⊂ X
for all g ∈ suppµ, then we would have Xg = X and so X = Xg−1. Therefore the group
generated by suppµ would fix X, which would imply H has finite index.

Now consider the (directed) transition graph of the Markov chain driven by the µ-random
walk on the space of right cosets. For the claim to fail, there must exist some Hf contained
in some strongly irreducible component S. Since the suppµ-semigroup orbit is infinite, the
counting measure on S is an infinite stationary measure, so the ergodic theorem for aperiodic
and irreducible Markov chains implies P(wn ∈ Hf) → 0. The Markov chain is aperiodic as
we assumed µ(e) > 0.

Applying the union bound over the finitely many f ∈ F gives the claim. □

Using this lemma, we show that random walks are F -switching with high probability.

Lemma 3.2. For any irreducible probability measure µ on a countable ICC group G and
finite subset F ⊂ G, we have

P(wn is F -switching)→ 1.

If µ is non-degenerate, then

P(wn is F -superswitching)→ 1.
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Proof. Without loss of generality we may assume F is symmetric, as any element that is
(F ∪F−1)-switching must be F -switching. For an element a to not be F -switching, we must
have f1af2 = f3af4 for some (f1, f2) ̸= (f3, f4) ∈ F × F , hence af2f

−1
4 a−1 = f−1

1 f3. Given
any non-trivial element f ∈ F 2, the collection of a ∈ G such that afa−1 ∈ F 2 is contained
in a union of at most |F |2 cosets of the centralizer CG(f). As G has the ICC property, the
subgroup CG(f) has infinite index, so Lemma 3.1 implies P(wnfw

−1
n ∈ F 2) → 0. Applying

the union bound over f ∈ F 2 \ {e} we see that P(wn is F -switching) tends to 1.
Now suppose that µ is non-degenerate. For x, y ∈ F , let Sx→y = {g ∈ G, gxg = y}, so by

the union bound we are done if we show that P(wn ∈ Sx→y)→ 0 for all (x, y) ̸= (e, e).
Suppose for the sake of contradiction that lim supP(wn ∈ Sx,y) > 0 for some (x, y) ̸=

(e, e). Let g ∈ Sx,y, then any element h contained in g−1Sx,y must be in the centralizer of
(xg)2 (see [FHTF19, Proposition 2.5]). Since lim supP(wn ∈ Sx,y) > 0, then as g is in the
semigroup generated by suppµ we deduce that lim supP(wn ∈ g−1Sx,y) > 0 as well. Hence
lim supP(wn ∈ CG((xg)

2)) > 0 so we see from Lemma 3.1 that CG ((xg)2) must have finite
index. Since G is ICC, this implies (xg)2 = e. Letting I be the set of involutions, we see
that xSx,y ⊂ I so in particular lim supP(wn ∈ I) > 0. However, since G is ICC, it is in
particular not virtually abelian, so by Theorem 5.1 of [ABGK23], we have P(wn ∈ I) → 0,
a contradiction. □

It would be tempting to construct µτ by letting τ be the first time that the µ-random
walk is F -switching. This would produce a measure µτ such that every element of suppµτ

is F -switching. However, we need to produce a measure µτ such that the set suppµτ is F -
switching, which is a strictly stronger property. We construct such a measure in the following
lemma.

Lemma 3.3. Let G be a countable ICC group. For any finite set F ⊂ G and irreducible
probability measure µ on G, there exists an almost surely finite (non-randomized) stopping
time τ with the property that suppµτ is F -switching. Moreover if µ is symmetric, then µτ

can be made symmetric.

Proof. Without loss of generality we may assume F is symmetric, as any set which is (F ∪
F−1)-switching is F -switching. Suppose µ is irreducible (resp. irreducible and symmetric).
We first ‘thin’ out the set of all F -switching (resp. superswitching) elements as follows. Let
(Ux)x∈G be a collection of i.i.d. Uniform([0, 1]) random variables, and let T be the subset of
G consisting of all a that are F -switching (resp. F -superswitching) and satisfy Ua ≥ Ub for
all b ∈ F 2aF 2 (resp. F 2a±F 2). Almost surely the random variables are distinct, so the set
T (resp. T ∪ T−1) is F -switching. We let τ be the first hitting time of T (resp. T ∪ T−1), so
it suffices to show that τ is almost surely finite.

By Lemma 3.2, almost surely for every sample path of the µ-random walk, wn is F -
switching infinitely often. If µ is irreducible and symmetric, it is non-degenerate, so wn is F -
superswitching infinitely often. Observe that the collection of subsets {F 2aF 2, a is F -switching}
(resp. {F 2a±F 2, a is F -superswitching}) induces a partition of the set of F -switching (resp.
F -superswitching) elements into sets of size at most 2|F |4. Then the sample path will almost
surely intersect infinitely many distinct such subsets A1, A2, ... in elements a1, a2, ... . Since
the random variables (Ux)x∈G are independent of the random walk, then each ai has proba-
bility at least |F |−4/2 of being in the random set T , independent of all other aj. Letting τ
be the first hitting time of T (resp. T ∪ T−1), we see that τ is almost surely finite.
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We observe that if µ is symmetric then, as T ∪ T−1 is symmetric, the stopped measure µτ

is clearly symmetric as well. By construction the set suppµτ is F -switching. □

4. Arboreal structures on groups

In this Section we construct our randomized stopping time used in the proof of Theorem
1.4. Using the framework developed in [EK23], we produce a µτ -boundary which, in section
5, enables us to construct a µτ -harmonic function that is not µ-harmonic. A consequence of
the framework of [EK23] is a short proof that this µτ -boundary is the Poisson boundary of
(G, µτ ) (see Corollary 4.8).

We first recall some notions from [EK23].

Definition 4.1. A scale on countable group is a triple Λ = (λ,Σ,A) where λ : N → N is
a non-decreasing function, and Σ = (Σ1,Σ2, ...) and A = (A0, A1, ...) are two sequences of
subsets, where (Σn)n≥1 are pairwise disjoint and A0 contains the identity.

Given a scale, we define

∆n = A0 ∪
⋃
i<n

(
Σ±

i ∪ A±
i

)
.

Observe that in the definition of ∆n, the union is taken over i strictly less than n, and
that ∆n contains the identity.

Definition 4.2. A spike decomposition of a group element g ∈ G with respect to a scale
(λ,Σ,A) is a triple (←−g , ĝ,−→g ) with g =←−g ĝ−→g , where ĝ ∈ Σn for some n, and the prefix and
postfix ←−g ,−→g are products of at most λ(n) elements from ∆n.

Definition 4.3. The despiking graph of a scale Λ is the graph with vertex set G and edges
(←−g , g) where ←−g is the prefix of a spike decomposition of an element g ∈ G.

The following definition is slightly stronger than that in [EK23], but suffices for our pur-
poses.

Definition 4.4. We say a scale Λ = (λ,Σ,A) is a ladder if

(1) Any g ∈ G admits at most one spike decomposition.
(2) For all n ≥ 1, the sets Σn and ∆

3λ(n)
n are disjoint.

Proposition 4.5. For any ladder Λ on a group G,

(1) The despiking graph F is a forest.
(2) Any tree of the forest F contains a unique unspiked vertex

We root each tree in F at its unique unspiked vertex, and refer to F as the ladder forest
associated to Λ.

The following lemma is the raison d’être of arboreal structures.

Lemma 4.6. [EK23, Lemma 4.5] If Λ = (λ,Σ, A) is a scale on a countable group G such
that for all n ≥ 1, Σn is ∆

5λ(n)
n -switching, then Λ is a ladder.
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4.1. Construction of µτ . Let G be an ICC group equipped with an irreducible probability
measure µ.

By Lemma 2.4, we fix a probability measure p on the natural numbers N such that p(i) > 0
for all i ∈ N and records are eventually simple. We also recall our gauge function Φ from
Lemma 2.6.

We inductively define a sequence of stopping times τi for i ≥ 0. First we let τ0 = 1, and
given τ0, ..., τk−1 we define τk as follows. We inductively keep track of a collection of finite
subsets (Si,j)i,j≥1 of G such that µτi(Si,j) > 1−Φ(j)−12−jpi and Si,j−1 ⊆ Si,j. We define this
collection by choosing (Si,k)i≥1 after choosing τk. Also let S0,j = {e}.

We let τk be the stopping time coming from Lemma 3.3 taking input the finite set( ⋃
0≤i≤k−1

Si,k

)5Φ(k)

.

Denote by Ai the set inside the parentheses in the previous expression. Letting Σi := Si,i,
we see from Lemma 4.6 that the scale (Φ,Σ,A) is a ladder.

We define a randomized stopping time τ as a mixture of the stopping times (τi)i≥0 weighted
by p. In other words, we have

µτ =
∑
i≥0

p(i)µτi .

4.2. Convergence to the boundary. Since the scale (Φ,Σ,A) is a ladder, by Lemma 4.6
we can consider the associated ladder forest F . We show that the µτ -random walk almost
surely converges to the boundary of this forest. This is a very slight modification of the
proof of [EK23, Theorem 3.1], included mainly for the convenience of the reader.

Proposition 4.7. For any g ∈ G, the µτ -random walk started at g almost surely converges
to the boundary of the forest ∂F . In addition, almost every sample path visits all but finitely
many points in the corresponding geodesic ray in F .

Proof. We sample the µτ -random walk in the following way. First we draw (Xi)i≥1 i.i.d.
according to p. Then, conditional on the Xi’s, we sample gi ∼ µτXi

. By Lemmas 2.4 annd
2.6, there almost surely exists k0 such that for all k ≥ k0, the kth record time satisfies
Tk+1 ≤ Φ(Rk) and the record Rk is simple.

Let Ek be the event that for every 1 ≤ i ≤ Φ(k), the increment gi lies in SXi,k. Then we
have P(Ec

k) ≤ 2−k. In addition, gTk
lies in ΣRk

with probability at least 1 − pRk
2−Rk . By

Borel-Cantelli, almost surely for all k sufficiently large the event Ek holds and xTk
∈ ΣRk

.
Increasing k0 if necessary, suppose this holds for all k ≥ k0.

Examine the random walk at time n satisfying Tk ≤ n ≤ Tk+1 − 1.

wn = g1...gTk−1︸ ︷︷ ︸
a

gTk
gTk+1...gn︸ ︷︷ ︸

b

.

Then each of a and b is a product of at most Φ(Rk) elements from ∆Rk
, hence agTk

b is a
spike decomposition of wn with spike gTk

and prefix a = wTk−1. As this holds for all k ≥ k0,
the sequence (wTk−1)k≥k0

is a geodesic ray in F , wn converges to the boundary of F and wn

intersects all but finitely many points of (wTk−1)k≥k0
.

Now suppose we start the random walk at g ∈ G. Since g ∈ ∆ℓ for ℓ sufficiently large, and
almost surely infinitely many of the increments gi are equal to the identity as µ(e), p(0) > 0,
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the previous argument shows that increment gwn = gagTk
b is still spiked with prefix ga and

spike gTk
for k sufficiently large. □

Using the “trunk criterion" of Erschler and Kaimanovich, we can show the following

Corollary 4.8. Let ν be the hitting measure on the boundary of the forest F . Then (∂F , ν)
is a model for the Poisson boundary of (G, µτ ).

Proof. By Proposition 4.7, for ν-a.e. ξ ∈ ∂F , the conditional random walk almost surely hits
all but finitely many points on the unique geodesic in F converging to ξ. In the language
of [EK23], this implies the geodesic forms a trunk for the conditional random walk, so by
[EK23, Proposition 3.8], the space (∂F , ν) is the Poisson boundary of (G, µτ ). □

5. Proof of Theorem 1.4

Let G be a countable group with an ICC quotient, equipped with an irreducible probability
measure µ. Without loss of generality, we may assume that G itself has the ICC property.
Indeed, any group with an ICC quotient carries a canonical normal subgroup H, known as
the hyper-FC-Centre, with the property that G/H is ICC [FF18, Proposition 2.2] and that
for any irreducible measure µ, the Poisson boundaries of (G, µ) and (G/H, π∗µ) coincide (see
[EK23, Proposition 5.1], [Jaw04, Lemma 4.7]), where π : G → G/H is the quotient map.
Given a randomized stopping time τ for the π∗µ-random walk on the quotient group, we
may pull back to G to get a randomized stopping time for the µ-random walk.

To deduce Theorem 1.4, it suffices to exhibit a bounded µτ -harmonic function on G that is
not µ-harmonic. Recall that we can sample the ith step of our µτ random walk by choosing
Xi ∼ p and then choosing wi ∼ µτXi

.
Given a natural number n ∈ N, we can construct a µτ -harmonic function as follows: given

the limiting boundary point ξ ∈ ∂F we ask what is the conditional probability that the first
step of the µτ -random walk was drawn from the measure µτn . This produces a bounded
function on ∂F , which induces a µτ -harmonic function on G by integrating against the µτ -
stationary hitting measure ν. Explicitly, this produces the µτ -harmonic function fn(g) =∫
∂F Pξ(X1 = n)dg∗ν(ξ). Here,

(
Pξ
)
ξ∈∂F are the measures coming from the disintegration

P =
∫
∂F Pξdν(ξ) [Roh67, Kai00]. However, we find it convenient to use a slightly different

µτ -harmonic function.
If the supports of (µτi)i≥0 were pairwise disjoint, then we could express these conditional

probabilities using the Doob h-transform to see that

Pξ(X1 = n) =
∑

y∈suppµτn

Pξ(w1 = y)

=
∑
y∈G

p(n)
dy∗ν

dν
(ξ)µτn(y)

The supports of (µτi)i≥0 need not be disjoint (say, if µ0 is fully supported), though the
latter expression still allows us to define a bounded µτ -harmonic function. Explicitly, our
choice of bounded µτ -harmonic function is

hn(g) := p(n) ·
∫
∂F

∑
y∈G

dy∗ν

dν
(ξ)µτn(y)dg∗ν(ξ).
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Observe that hn(e) = p(n) as ν is µτ -stationary. If hn was also µ-harmonic, then the
Optional Stopping Theorem would imply that the average

∑
g∈G µτn(g)hn(g) is also equal

to p(n). We will show that this average is at least 1 − on(1), which is strictly greater than
p(n) for n sufficiently large. This will be a consequence of the following proposition, proven
in Section 5.1. Recall the sets Sn,n defined in Section 4.1.

Proposition 5.1. Let Fn be the collection of subtrees consisting of descendants of elements
of the form gw where g ∈ Sn,n and w ∈ ∆

Φ(n)
n . Then for any g ∈ Sn,n, we have g∗ν(∂Fn) ≥

1− on(1).

Given this proposition, we perform a little bit of averaging. Expanding the definition of
hn(g), swapping a sum and integral, and changing variables gives us∑

g∈G

µτn(g)hn(g) = p(n) ·
∫
∂F

(∑
g′∈G

µτn(g
′)
dg′∗ν

dν
(ξ)

)(∑
g∈G

µτn(g)
dg∗ν

dν
(ξ)

)
dν(ξ).

Writing νn = µτn ∗ ν, the right side is none other than p(n) ·
∥∥dνn

dν

∥∥2
2
, so our goal is to show

that
∥∥dνn

dν

∥∥2
2
≥ (1− on(1))/p(n).

With probability (1− on(1))p(n) the first increment of the µτ -random walk is drawn from
Sn,n, which by Proposition 5.1 implies that ν(∂Fn) ≥ (1 − on(1))p(n). Let fn = dνn

dν
. Then

also from Proposition 5.1, we have ∥fn|∂Fn∥1 ≥ 1− on(1).
Applying Cauchy-Schwarz to fn · 1∂Fn , we see that

1− on(1) ≤ ∥fn|∂Fn∥1 ≤ ∥fn∥2 ∥1Fn∥2 = ∥fn∥2 (1− on(1))
√

p(n),

which implies ∥fn∥22 ≥ (1− on(1))/p(n).
As a result, we have ∑

g∈G

µτn(g)hn(g) > hn(e)

for n sufficiently large, so we can conclude that the µτ -harmonic function hn is not µ-
harmonic. Therefore the Poisson boundary of (G, µτ ) is strictly larger than that of (G, µ). □

Remark 5.2. It is natural at this point to ask for which bounded functions f : G → R
there exists a randomized stopping time τ such that f is µτ -harmonic. One can modify
our argument, letting p(0) be sufficiently small and replacing Φ with a sufficiently quickly
growing function, to show that with probability close to 1, the µτ -random walk started at
any fixed g will forever lie in a subtree of the (Φ,Σ, A)-ladder forest rooted at g. As a result,
one can express any bounded function on G as the pointwise limit of a sequence of bounded
functions which are harmonic with respect to some randomized stopping time transform of
µ.

5.1. Proof of Proposition 5.1. We start with the following lemma about record times.

Lemma 5.3. Let p be a probability measure on N which has eventually simple records. Then
P(n ∈ (R

k
)k≥1)→ 0 as n→∞.

Proof. If not, then there exists some δ > 0 and infinitely many n1 < n2 < ... such that
P(ni ∈ (Rk)k≥1) ≥ δ. For each such ni, with probability at least δ2, there are two consecutive
record times Tk < Tk+1 such that Rk = ni = Rk+1. Hence with positive probability infinitely
many ni are non-simple records. □
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Proof of Proposition 5.1. Given ε > 0, let (Xi)i≥1 be i.i.d. samples from p and let (gi)i≥1

independent with gi ∼ µτXi
. For k0 sufficiently large depending on ε and n sufficiently large

depending on k0, the following holds with probability at least 1− ε.
(1) n is not a record value (by Lemma 5.3)
(2) at least one of X1, ..., Xσ is equal to 0, where σ = inf{t ≥ 1, Xt ≥ n} (as p(0) > 0).
(3) For all k ≥ k0, the kth record Rk is simple and Tk+1 ≤ Φ(Rk) (by Lemma 2.4).
(4) For all k ≥ k0, for all 1 ≤ i ≤ Φ(Rk), the increment gi is drawn from SXi,k.
(5) n is larger than Rk0 .

Let {wm}m≥1 be a sample path on this event. We claim that for every m ≥ 1 and g ∈ Sn,n,
the element gwm is spiked and lies in Fn. Pick k such that Rk < n < Rk+1.

Then for times m ≤ Tk+1 − 1, since wm is a product of at most Φ(Rk) ≤ Φ(n) increments
drawn from ∆Rk

⊂ ∆n, the element gwm is spiked with spike g, hence it lies in Fn.
For times m ≥ Tk+1, choose k′ minimal such that Tk′ ≤ m ≤ Tk′+1 − 1. As at least one

of g1, ..., gTk′−1 is trivial, then gwTk′
is a product of at most Φ(Rk′) increments drawn from

∆Rk′
, so that gwm is still spiked with prefix gwTk′−1 and so gwm lies in Fn. □
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